Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Matrix metalloproteinase-9 predicts pulmonary status declines in alpha1-antitrypsin deficiency

Abstract

Abstract Background Matrix metalloproteinase-9 (MMP-9) may be important in the progression of emphysema, but there have been few longitudinal clinical studies of MMP-9 including pulmonary status and COPD exacerbation outcomes. Methods We utilized data from the placebo arm (n = 126) of a clinical trial of patients with alpha1-antitrypsin deficiency (AATD) and emphysema to examine the links between plasma MMP-9 levels, pulmonary status, and COPD exacerbations over a one year observation period. Pulmonary function, computed tomography lung density, incremental shuttle walk test (ISWT), and COPD exacerbations were assessed at regular intervals over 12 months. Prospective analyses used generalized estimating equations to incorporate repeated longitudinal measurements of MMP-9 and all endpoints, controlling for age, gender, race-ethnicity, leukocyte count, and tobacco history. A secondary analysis also incorporated highly-sensitive C-reactive protein levels in predictive models. Results At baseline, higher plasma MMP-9 levels were cross-sectionally associated with lower FEV1 (p = 0.03), FVC (p < 0.001), carbon monoxide transfer factor (p = 0.03), resting oxygen saturation (p = 0.02), and ISWT distance walked (p = 0.02) but were not associated with radiographic lung density or total lung capacity (TLC). In longitudinal analyses, MMP-9 predicted a further decline in transfer factor (p = 0.04) and oxygen saturation (p < 0.001). MMP-9 also predicted worsening lung density (p = 0.003), increasing TLC (p = 0.02), and more frequent COPD exacerbations over follow-up (p = 0.003). Controlling additionally for hs-CRP levels did not substantively change the longitudinal associations between MMP-9 and these outcomes. Conclusions Increased plasma MMP-9 levels generally predicted pulmonary status declines, including worsening transfer factor and lung density as well as greater COPD exacerbations in AATD-associated emphysema.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View