Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Robust Control Pulses Design for Electron Shuttling in Solid-State Devices

Abstract

In this brief, we study robust pulse design for electron shuttling in solid-state devices. This is crucial for many practical applications of coherent quantum mechanical systems. Our objective is to design control pulses that can transport an electron along a chain of donors and that also make this process robust to parameter uncertainties. We formulate this problem here as a set of optimal control problems and derive explicit expressions for the gradients of the aggregate transfer fidelity. Numerical results for a donor chain of ionized phosphorus atoms in bulk silicon demonstrate the efficacy of our algorithm.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View