Skip to main content
Open Access Publications from the University of California

Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes.

  • Author(s): Yang, Xiaoyu
  • You, Chenjiang
  • Wang, Xufeng
  • Gao, Lei
  • Mo, Beixin
  • Liu, Lin
  • Chen, Xuemei
  • et al.


Small RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) serve as core players in gene silencing at transcriptional and post-transcriptional levels in plants, but their subcellular localization has not yet been well studied, thus limiting our mechanistic understanding of sRNA action.


We investigate the cytoplasmic partitioning of sRNAs and their targets globally in maize (Zea mays, inbred line "B73") and rice (Oryza sativa, cv. "Nipponbare") by high-throughput sequencing of polysome-associated sRNAs and 3' cleavage fragments, and find that both miRNAs and a subset of 21-nucleotide (nt)/22-nt siRNAs are enriched on membrane-bound polysomes (MBPs) relative to total polysomes (TPs) across different tissues. Most of the siRNAs are generated from transposable elements (TEs), and retrotransposons positively contributed to MBP overaccumulation of 22-nt TE-derived siRNAs (TE-siRNAs) as opposed to DNA transposons. Widespread occurrence of miRNA-mediated target cleavage is observed on MBPs, and a large proportion of these cleavage events are MBP-unique. Reproductive 21PHAS (21-nt phasiRNA-generating) and 24PHAS (24-nt phasiRNA-generating) precursors, which were commonly considered as noncoding RNAs, are bound by polysomes, and high-frequency cleavage of 21PHAS precursors by miR2118 and 24PHAS precursors by miR2275 is further detected on MBPs. Reproductive 21-nt phasiRNAs are enriched on MBPs as opposed to TPs, whereas 24-nt phasiRNAs are nearly completely devoid of polysome occupancy.


MBP overaccumulation is a conserved pattern for cytoplasmic partitioning of sRNAs, and endoplasmic reticulum (ER)-bound ribosomes function as an independent regulatory layer for miRNA-induced gene silencing and reproductive phasiRNA biosynthesis in maize and rice.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View