- Main
Reconstructing the Position and Intensity of Multiple Gamma-Ray Point Sources With a Sparse Parametric Algorithm
Published Web Location
https://doi.org/10.1109/tns.2020.3024735Abstract
We present an experimental demonstration of additive point source localization (APSL), a sparse parametric imaging algorithm that reconstructs the 3-D positions and activities of multiple gamma-ray point sources. Using a handheld gamma-ray detector array and up to four 8 mu Ci 137Cs gamma-ray sources, we performed both source-search and source-separation experiments in an indoor laboratory environment. In the majority of the source-search measurements, APSL reconstructed the correct number of sources with position accuracies of 20 cm and activity accuracies (unsigned) of 20%, given measurement times of 2 to 3 min and distances of closest approach (to any source) of 20 cm. In source-separation measurements where the detector could be moved freely about the environment, APSL was able to resolve two sources separated by 75 cm or more given only 60 s of measurement time. In these source-separation measurements, APSL produced larger total activity errors of 40%, but obtained source-separation distances accurate to within 15 cm. We also compare our APSL results against traditional maximum likelihood-expectation maximization (ML-EM) reconstructions and demonstrate improved image accuracy and interpretability using APSL over ML-EM. These results indicate that APSL is capable of accurately reconstructing gamma-ray source positions and activities using measurements from existing detector hardware.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-