Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative



To investigate the association of cartilage degeneration with previous knee injuries not undergoing surgery, determined by morphologic and quantitative 3-T magnetic resonance imaging (MRI).

Materials and methods

We performed a nested cross-sectional study of right knee MRIs from participants in the Osteoarthritis Initiative (OAI) aged 45-79 with baseline Kellgren-Lawrence score of 0-2. Cases were 142 right knees of patients with self-reported history of injury limiting the ability to walk for at least 2 days. Controls were 426 right knees without history of injury, frequency-matched to cases on age, BMI, gender, KL scores and race (1:3 ratio). Cases and controls were compared using covariate-adjusted linear regression analysis, with the outcomes of region-specific T2 mean, laminar analysis and heterogeneity measured by texture analysis to investigate early cartilage matrix abnormalities and the Whole-Organ Magnetic Resonance Imaging Score (WORMS) to investigate morphologic knee lesions.


Compared to control subjects, we found significantly higher mean T2 values in the injury [lateral tibia (28.10 ms vs. 29.11 ms, p = 0.001), medial tibia (29.70 ms vs. 30.40 ms, p = 0.014) and global knee cartilage (32.73 ms vs. 33.29 ms, p = 0.005)]. Injury subjects also had more heterogeneous cartilage as measured by GLCM texture contrast, variance and entropy (p < 0.05 in 14 out of 18 texture parameters). WORMS gradings were not significantly different between the two groups (p > 0.05).


A history of knee injury not treated surgically is associated with higher and more heterogeneous T2 values, but not with morphologic knee abnormalities. Our findings suggest that significant, conservatively treated knee injuries are associated with permanent cartilage matrix abnormalities.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View