Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
PyWGCNA: a Python package for weighted gene co-expression network analysis
- Rezaie, Narges;
- Reese, Farilie;
- Mortazavi, Ali
- Editor(s): Mathelier, Anthony
Abstract
Motivation
Weighted gene co-expression network analysis (WGCNA) is frequently used to identify modules of genes that are co-expressed across many RNA-seq samples. However, the current R implementation is slow, is not designed to compare modules between multiple WGCNA networks, and its results can be hard to interpret as well as to visualize. We introduce the PyWGCNA Python package, which is designed to identify co-expression modules from large RNA-seq datasets. PyWGCNA has a faster implementation than the R version of WGCNA and several additional downstream analysis modules for functional enrichment analysis using GO, KEGG, and REACTOME, inter-module analysis of protein-protein interactions, as well as comparison of multiple co-expression modules to each other and/or external lists of genes such as marker genes from single cell.Results
We apply PyWGCNA to two distinct datasets of brain bulk RNA-seq from MODEL-AD to identify modules associated with the genotypes. We compare the resulting modules to each other to find shared co-expression signatures in the form of modules with significant overlap across the datasets.Availability and implementation
The PyWGCNA library for Python 3 is available on PyPi at pypi.org/project/PyWGCNA and on GitHub at github.com/mortazavilab/PyWGCNA. The data underlying this article are available in GitHub at github.com/mortazavilab/PyWGCNA/tutorials/5xFAD_paper.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%