- Main
Ultrahigh-Pressure Liquid Chromatography Triple-Quadrupole Tandem Mass Spectrometry Quantitation of Polyphenols and Secoiridoids in California-Style Black Ripe Olives and Dry Salt-Cured Olives
Published Web Location
https://doi.org/10.1021/jf506367eAbstract
The chemical composition of finished table olive products is influenced by the olive variety and the processing method used to debitter or cure table olives. Herein, a rapid ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry method, using dynamic multiple reaction monitoring, was developed for the quantitation of 12 predominant phenolic and secoiridoid compounds in olive fruit, including hydroxytyrosol, oleuropein, hydroxytyrosol-4-O-glucoside, luteolin-7-O-glucoside, rutin, verbascoside, oleoside-11-methyl ester, 2,6-dimethoxy-p-benzoquinone, phenolic acids (chlorogenic and o-coumaric acids), oleuropein aglycone, and ligstroside aglycone. Levels of these compounds were measured in fresh and California-style black ripe processed Manzanilla olives and two dry salt-cured olive varieties (Mission from California and Throuba Thassos from Greece). Results indicate that the variety and debittering processing method have strong impact on the profile of phenolic and secoiridoid compounds in table olives. The dry salt-cured olives contained higher amounts of most compounds studied, especially oleuropein (1459.5 ± 100.1 μg/g), whereas California-style black ripe olives had a significant reduction or loss of these bioactive compounds (e.g., oleuropein level at 36.7 ± 3.1 μg/g).
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-