Skip to main content
eScholarship
Open Access Publications from the University of California

Softly Broken Supersymmetric Desert from Orbifold Compactification

  • Author(s): Barbieri, Riccardo
  • et al.
Abstract

A new viewpoint for the gauge hierarchy problem is proposed: compactification at a large scale, 1/R, leads to a low energy effective theory with supersymmetry softly broken at a much lower scale, \alpha/R. The hierarchy is induced by an extremely small angle \alpha which appears in the orbifold compactification boundary conditions. The same orbifold boundary conditions break Peccei-Quinn symmetry, leading to a new solution to the \mu problem. Explicit 5d theories are constructed with gauge groups SU(3) \times SU(2) \times U(1) and SU(5), with matter in the bulk or on the brane, which lead to the (next-to) minimal supersymmetric standard model below the compactification scale. In all cases the soft supersymmetry-breaking and \mu parameters originate from bulk kinetic energy terms, and are highly constrained. The supersymmetric flavor and CP problems are solved.

Main Content
Current View