Skip to main content
Download PDF
- Main
Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks.
Published Web Location
https://doi.org/10.1148/ryai.2021200276Abstract
Purpose
To evaluate the feasibility and accuracy of simulated postcontrast T1-weighted brain MR images generated by using precontrast MR images in patients with brain glioma.Materials and methods
In this retrospective study, a three-dimensional deep convolutional neural network was developed to simulate T1-weighted postcontrast images from eight precontrast sequences in 400 patients (mean age, 57 years; 239 men; from 2015 to 2020), including 332 with glioblastoma and 68 with lower-grade gliomas. Performance was evaluated by using quantitative image similarity and error metrics and enhancing tumor overlap analysis. Performance was also assessed on a multicenter external dataset (n = 286 from the 2019 Multimodal Brain Tumor Segmentation Challenge; mean age, 60 years; ratio of men to women unknown) by using transfer learning. A subset of cases was reviewed by neuroradiologist readers to assess whether simulated images affected the ability to determine the tumor grade.Results
Simulated whole-brain postcontrast images were both qualitatively and quantitatively similar to the real postcontrast images in terms of quantitative image similarity (structural similarity index of 0.84 ± 0.05), pixelwise error (symmetric mean absolute percent error of 3.65%), and enhancing tumor compartment overlap (Dice coefficient, 0.65 ± 0.25). Similar results were achieved with the external dataset (Dice coefficient, 0.62 ± 0.27). There was no difference in the ability of the neuroradiologist readers to determine the tumor grade in real versus simulated images (accuracy, 87.7% vs 90.6%; P = .87).Conclusion
The developed model was capable of producing simulated postcontrast T1-weighted MR images that were similar to real acquired images as determined by both quantitative analysis and radiologist assessment.Keywords: MR-Contrast Agent, MR-Imaging, CNS, Brain/Brain Stem, Contrast Agents-Intravenous, Neoplasms-Primary, Experimental Investigations, Technology Assessment, Supervised Learning, Transfer Learning, Convolutional Neural Network, Deep Learning Algorithms, Machine Learning Algorithms Supplemental material is available for this article. © RSNA, 2021.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%