Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Fracture risk in diabetic elderly men: the MrOS study

Abstract

Aims/hypothesis

Diabetes mellitus is associated with increased fracture risk in women but few studies are available in men. To evaluate the relationship between diabetes and prospective non-vertebral fractures in elderly men, we used data from the Osteoporotic Fractures in Men (MrOS) study.

Methods

The MrOS enrolled 5,994 men (aged ≥65 years). Diabetes (ascertained by self-report, the use of medication for diabetes or an elevated fasting glucose level) was reported in 881 individuals, 80 of whom were using insulin. Hip and spine bone mineral density (BMD) was measured using dual x-ray absorptiometry (DXA). After recruitment, the men were followed for incident non-vertebral fractures using a triannual (3 yearly) questionnaire for an average of 9.1 (SD 2.7) years. The Cox proportional hazards model was used to assess the incident risk of fractures.

Results

In models adjusted for age, race, clinic site and total hip BMD, the risk of non-vertebral fracture was higher in men with diabetes compared with normoglycaemic men (HR 1.30, 95% CI 1.09, 1.54) and was elevated in men using insulin (HR 2.46, 95% CI 1.69, 3.59). Men with impaired fasting glucose did not have a higher risk of fracture compared with normoglycaemic men (HR 1.04, 95% CI 0.89, 1.21). After multivariable adjustment, the risk of non-vertebral fracture remained higher only among men with diabetes who were using insulin (HR 1.74, 95% CI 1.13, 2.69).

Conclusions/interpretation

Men with diabetes who are using insulin have an increased risk of non-vertebral fracture for a given age and BMD.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View