Skip to main content
Download PDF
- Main
Quantitative analysis of peri-tumor fat in different molecular subtypes of breast cancer
Published Web Location
https://doi.org/10.1016/j.mri.2018.06.019Abstract
Background and purposes
The aim of this study was to develop morphological analytic methods to analyze the tumor-fat interface and in different peritumoral shells away from the tumor, and to compare the results among three molecular subtypes of breast cancer.Materials and methods
A total of 102 women (mean age 48.5 y/o) with solitary well-defined breast cancers were analyzed, including 46 human epidermal growth factor receptor 2 (HER2) (+), 46 HER2(-) hormonal receptor (HR) (+), and 10 triple negative (TN) breast cancers. The tumor lesion, the breast, the fibroglandular and fatty tissue were segmented using well-established methods. The whole breast fat percentage and the peri-tumor interface fat percentage were measured. Three shells (SH1, SH2, SH3) surrounding the convex hall of the three dimensional (3D) tumor were defined and in each shell the volumetric percentage of fat was calculated. The peri-tumor interface fat percentage and the volumetric percentage of fat in the three peri-tumoral shells were compared among different subtypes.Results
In the TN group, the fat percentage on the tumor boundary was 43 ± 20% and 78 ± 12% for two dimensional (2D) and 3D measurement, respectively, which were the highest among the three subtypes but not significantly different. The fat percentage in SH2 and SH3 in the TN group was 82 ± 7% and 85 ± 7%, which was significantly higher compared to the two other two subtypes. The results remained after controlling for the whole breast fat percentage.Conclusions
This study provided a feasible method for quantitative analysis of peri-tumoral tissue characteristics. Because of small patient number, the finding that TN tumors had the highest peri-tumor fat content among the three subtypes needs to be further verified with a large cohort study.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%