Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Simultaneous estimation of multiple eigenvalues with short-depth quantum circuit on early fault-tolerant quantum computers

Abstract

We introduce a multi-modal, multi-level quantum complex exponential least squares (MM-QCELS) method to simultaneously estimate multiple eigenvalues of a quantum Hamiltonian on early fault-tolerant quantum computers. Our theoretical analysis demonstrates that the algorithm exhibits Heisenberg-limited scaling in terms of circuit depth and total cost. Notably, the proposed quantum circuit utilizes just one ancilla qubit, and with appropriate initial state conditions, it achieves significantly shorter circuit depths compared to circuits based on quantum phase estimation (QPE). Numerical results suggest that compared to QPE, the circuit depth can be reduced by around two orders of magnitude under several settings for estimating ground-state and excited-state energies of certain quantum systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View