Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

PICS2: next-generation fine mapping via probabilistic identification of causal SNPs

Abstract

Summary

The Probabilistic Identification of Causal SNPs (PICS) algorithm and web application was developed as a fine-mapping tool to determine the likelihood that each single nucleotide polymorphism (SNP) in LD with a reported index SNP is a true causal polymorphism. PICS is notable for its ability to identify candidate causal SNPs within a locus using only the index SNP, which are widely available from published GWAS, whereas other methods require full summary statistics or full genotype data. However, the original PICS web application operates on a single SNP at a time, with slow performance, severely limiting its usability. We have developed a next-generation PICS tool, PICS2, which enables performance of PICS analyses of large batches of index SNPs with much faster performance. Additional updates and extensions include use of LD reference data generated from 1000 Genomes phase 3; annotation of variant consequences; annotation of GTEx eQTL genes and downloadable PICS SNPs from GTEx eQTLs; the option of generating PICS probabilities from experimental summary statistics; and generation of PICS SNPs from all SNPs of the GWAS catalog, automatically updated weekly. These free and easy-to-use resources will enable efficient determination of candidate loci for biological studies to investigate the true causal variants underlying disease processes.

Availability and implementation

PICS2 is available at https://pics2.ucsf.edu.

Supplementary information

Supplementary data are available at Bioinformatics online.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View