Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Multi-view kernel construction

Abstract

In many problem domains data may come from multiple sources (or views), such as video and audio from a camera or text on and links to a web page. These multiple views of the data are often not directly comparable to one another, and thus a principled method for their integration is warranted. In this paper we develop a new algorithm to leverage information from multiple views for unsupervised clustering by constructing a custom kernel. We generate a multipartite graph (with the number of parts given by the number of views) that induces a kernel we then use for spectral clustering. Our algorithm can be seen as a generalization of co-clustering and spectral clustering and a relative of Kernel Canonical Correlation Analysis. We demonstrate the algorithm on four data sets: an illustrative artificial data set, synthetic fMRI data, voxels from an fMRI study, and a collection of web pages. Finally, we compare its performance to common alternatives.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View