- Main
Accelerating Protein Folding Molecular Dynamics Using Inter-Residue Distances from Machine Learning Servers
Published Web Location
https://doi.org/10.1021/acs.jctc.1c00916Abstract
Recently, predicting the native structures of proteins has become possible using computational molecular physics (CMP)─physics-based force fields sampled with proper statistics─but only for small proteins. Algorithms with better scaling are needed. We describe ML x MELD x MD, a molecular dynamics (MD) method that inputs residue contacts derived from machine learning (ML) servers into MELD, a Bayesian accelerator that preserves detailed-balance statistics. Contacts are derived from trRosetta-predicted distance histograms (distograms) and are integrated into MELD's atomistic MD as spatial restraints through parametrized potential functions. In the CASP14 blind prediction event, ML x MELD x MD predicted 13 native structures to better than 4.5 Å error, including for 10 proteins in the range of 115-250 amino acids long. Also, the scaling of simulation time vs protein length is much better than unguided MD: tsim ∼ e0.023N for ML x MELD x MD vs tsim ∼ e0.168N for MD alone. This shows how machine learning information can be leveraged to advance physics-based modeling of proteins.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-