Skip to main content
eScholarship
Open Access Publications from the University of California

Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models

  • Author(s): Bumbaca, Federico
  • Advisor(s): Currim, Imran
  • et al.
No data is associated with this publication.
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License
Abstract

I propose a distributed Markov chain Monte Carlo (MCMC) algorithm for estimating Bayesian hierarchical models when the number of cross-sectional units is very large and the objects of interest are the unit-level parameters. The two-stage algorithm is asymptotically exact, retains the flexibility of a standard MCMC algorithm, and is easy to implement. The algorithm constructs an estimator of the posterior predictive distribution of the unit-level parameters in the first stage, and uses the estimator as the prior distribution in the second stage for the unit-level draws. Both stages are embarrassingly parallel. I demonstrate the algorithm with simulated data from a hierarchical logit model and show that it is faster and more efficient than a single machine algorithm by at least an order of magnitude. For a relatively small number of observations per cross-sectional unit, the algorithm is both faster and has better mixing properties than the standard hybrid Gibbs sampler. I illustrate my approach with data on 1,100,000 donors to a charitable organization, and simulations with up to 100 million units.

Main Content

This item is under embargo until June 26, 2024.