Skip to main content
Download PDF
- Main
The Conley conjecture for the cotangent bundle
Published Web Location
https://doi.org/10.1007/s00013-010-0208-zAbstract
We prove the Conley conjecture for cotangent bundles of oriented, closed manifolds, and Hamiltonians which are quadratic at infinity, i.e., we show that such Hamiltonians have infinitely many periodic orbits. For the conservative systems, similar results have been proven by Lu and Mazzucchelli using convex Hamiltonians and Lagrangian methods. Our proof uses Floer homological methods from Ginzburg’s proof of the Conley conjecture for closed symplectically aspherical manifolds.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%