Skip to main content
Open Access Publications from the University of California

Magnetically disordered phase in epitaxial iron-deficient F e3 O4 thin films

  • Author(s): Moyer, JA
  • Lee, S
  • Schiffer, P
  • Martin, LW
  • et al.

© 2015 American Physical Society. We report on the transport and magnetic properties of iron-deficient Fe3O4(Fe3-δO4) thin films grown with pulsed-laser deposition, where the stoichiometry and amount of cation vacancies are precisely controlled through changes in the oxygen partial pressure during growth. As the stoichiometry evolves from Fe3O4 to γ-Fe2O3, three distinct structural and magnetic regimes emerge: a Fe3O4-like regime, a γ-Fe2O3-like regime, and a transition regime. While reflection high-energy electron diffraction measurements reveal that films in all three regimes grow epitaxially cube-on-cube on MgO substrates, the transition-regime films are characterized by an absence of long-range, out-of-plane ordering in the film. Selected area electron diffraction measurements reveal the transition-regime films are well ordered on a local level, but not throughout the entire film. The structural disorder of the transition-regime films does not manifest itself in the transport properties, where a systematic change in resistivity, due primarily to variations in the Fe2+:Fe3+ cation ratio, occurs continuously throughout all three regimes. Large differences are observed, however, in the magnetic properties of the transition-regime films, which are reminiscent of magnetically disordered systems. We attribute this unique magnetically disordered state to magnetic frustration arising at the boundaries between the different locally ordered regions.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View