A birational Nevanlinna constant and its consequences
Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A birational Nevanlinna constant and its consequences


The purpose of this paper is to modify the notion of the Nevanlinna constant $\operatorname{Nev}(D)$, recently introduced by the first author, for an effective Cartier divisor on a projective variety $X$. The modified notion is called the birational Nevanlinna constant and is denoted by $\operatorname{Nev}_{\text{bir}}(D)$. By computing $\operatorname{Nev}_{\text{bir}}(D)$ using the filtration constructed by Autissier in 2011, we establish a general result (see the General Theorem in the Introduction), in both the arithmetic and complex cases, which extends to general divisors the 2008 results of Evertse and Ferretti and the 2009 results of the first author. The notion $\operatorname{Nev}_{\text{bir}}(D)$ is originally defined in terms of Weil functions for use in applications, and it is proved later in this paper that it can be defined in terms of local effectivity of Cartier divisors after taking a proper birational lifting. In the last two sections, we use the notion $\operatorname{Nev}_{\text{bir}}(D)$ to recover the proof of an example of Faltings from his 2002 Baker's Garden article.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View