- Main
Fair Data Representation for Machine Learning at the Pareto Frontier.
Abstract
As machine learning powered decision-making becomes increasingly important in our daily lives, it is imperative to strive for fairness in the underlying data processing. We propose a pre-processing algorithm for fair data representation via which L 2 ( ℙ ) -objective supervised learning results in estimations of the Pareto frontier between prediction error and statistical disparity. Particularly, the present work applies the optimal affine transport to approach the post-processing Wasserstein barycenter characterization of the optimal fair L 2 -objective supervised learning via a pre-processing data deformation. Furthermore, we show that the Wasserstein geodesics from learning outcome marginals to their barycenter characterizes the Pareto frontier between L 2 -loss and total Wasserstein distance among the marginals. Numerical simulations underscore the advantages: (1) the pre-processing step is compositive with arbitrary conditional expectation estimation supervised learning methods and unseen data; (2) the fair representation protects the sensitive information by limiting the inference capability of the remaining data with respect to the sensitive data; (3) the optimal affine maps are computationally efficient even for high-dimensional data.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-