Skip to main content
Open Access Publications from the University of California

Scaling matters: incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities

  • Author(s): Shero, MR
  • Costa, DP
  • Burns, JM
  • et al.

© 2015, Springer-Verlag Berlin Heidelberg. Adult Weddell seals (Leptonychotes weddellii) haul-out on the ice in October/November (austral spring) for the breeding season and reduce foraging activities for ~4 months until their molt in the austral fall (January/February). After these periods, animals are at their leanest and resume actively foraging for the austral winter. In mammals, decreased exercise and hypoxia exposure typically lead to decreased production of O2-carrying proteins and muscle wasting, while endurance training increases aerobic potential. To test whether similar effects were present in marine mammals, this study compared the physiology of 53 post-molt female Weddell seals in the austral fall to 47 pre-breeding females during the spring in McMurdo Sound, Antarctica. Once body mass and condition (lipid) were controlled for, there were no seasonal changes in total body oxygen (TBO2) stores. Within each season, hematocrit and hemoglobin values were negatively correlated with animal size, and larger animals had lower mass-specific TBO2 stores. But because larger seals had lower mass-specific metabolic rates, their calculated aerobic dive limit was similar to smaller seals. Indicators of muscular efficiency, myosin heavy chain composition, myoglobin concentrations, and aerobic enzyme activities (citrate synthase and β-hydroxyacyl CoA dehydrogenase) were likewise maintained across the year. The preservation of aerobic capacity is likely critical to foraging capabilities, so that following the molt Weddell seals can rapidly regain body mass at the start of winter foraging. In contrast, muscle lactate dehydrogenase activity, a marker of anaerobic metabolism, exhibited seasonal plasticity in this diving top predator and was lowest after the summer period of reduced activity.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View