- Main
Actin binding to WH2 domains regulates nuclear import of the multifunctional actin regulator JMY
Published Web Location
https://doi.org/10.1091/mbc.e11-12-0992Abstract
Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. In response to DNA damage, JMY accumulates in the nucleus and promotes p53-dependent apoptosis. JMY's actin-regulatory activity relies on a cluster of three actin-binding Wiskott-Aldrich syndrome protein homology 2 (WH2) domains that nucleate filaments directly and also promote nucleation activity of the Arp2/3 complex. In addition to these activities, we find that the WH2 cluster overlaps an atypical, bipartite nuclear localization sequence (NLS) and controls JMY's subcellular localization. Actin monomers bound to the WH2 domains block binding of importins to the NLS and prevent nuclear import of JMY. Mutations that impair actin binding, or cellular perturbations that induce actin filament assembly and decrease the concentration of monomeric actin in the cytoplasm, cause JMY to accumulate in the nucleus. DNA damage induces both cytoplasmic actin polymerization and nuclear import of JMY, and we find that damage-induced nuclear localization of JMY requires both the WH2/NLS region and importin β. On the basis of our results, we propose that actin assembly regulates nuclear import of JMY in response to DNA damage.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-