Skip to main content
eScholarship
Open Access Publications from the University of California

Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments

  • Author(s): Raven, MR
  • Adkins, JF
  • Werne, JP
  • Lyons, TW
  • Sessions, AL
  • et al.
Abstract

© 2015 Elsevier Ltd. Reactions between reduced inorganic sulfur and organic compounds are thought to be important for the preservation of organic matter (OM) in sediments, but the sulfurization process is poorly understood. Sulfur isotopes are potentially useful tracers of sulfurization reactions, which often occur in the presence of a strong porewater isotopic gradient driven by microbial sulfate reduction. Prior studies of bulk sedimentary OM indicate that sulfurized products are34S-enriched relative to coexisting sulfide, and experiments have produced34S-enriched organosulfur compounds. However, analytical limitations have prevented the relationship from being tested at the molecular level in natural environments. Here we apply a new method, coupled gas chromatography - inductively coupled plasma mass spectrometry, to measure the compound-specific sulfur isotopic compositions of volatile organosulfur compounds over a 6m core of anoxic Cariaco Basin sediments. In contrast to current conceptual models, nearly all extractable organosulfur compounds were substantially depleted in34S relative to coexisting kerogen and porewater sulfide. We hypothesize that this34S depletion is due to a normal kinetic isotope effect during the initial formation of a carbon-sulfur bond and that the source of sulfur in this relatively irreversible reaction is most likely the bisulfide anion in sedimentary porewater. The34S-depleted products of irreversible bisulfide addition alone cannot explain the isotopic composition of total extractable or residual OM. Therefore, at least two different sulfurization pathways must operate in the Cariaco Basin, generating isotopically distinct products. Compound-specific sulfur isotope analysis thus provides new insights into the timescales and mechanisms of OM sulfurization.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View