Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Waves in strongly nonlinear discrete systems

Abstract

The paper presents the main steps in the development of the strongly nonlinear wave dynamics of discrete systems. The initial motivation was prompted by the challenges in the design of barriers to mitigate high-amplitude compression pulses caused by impact or explosion. But this area poses a fundamental mathematical and physical problem and should be considered as a natural step in developing strongly nonlinear wave dynamics. Strong nonlinearity results in a highly tunable behaviour and allows design of systems with properties ranging from a weakly nonlinear regime, similar to the classical case of the Fermi-Pasta-Ulam lattice, or to a non-classical case of sonic vacuum. Strongly nonlinear systems support periodic waves and one of the fascinating results was a discovery of a strongly nonlinear solitary wave in sonic vacuum (a limiting case of a periodic wave) with properties very different from the Korteweg de Vries solitary wave. Shock-like oscillating and monotonous stationary stress waves can also be supported if the system is dissipative. The paper discusses the main theoretical and experimental results, focusing on travelling waves and possible future developments in the area of strongly nonlinear metamaterials.This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View