- Main
Maximum Geometric Quantum Entropy.
Published Web Location
https://doi.org/10.3390/e26030225Abstract
Any given density matrix can be represented as an infinite number of ensembles of pure states. This leads to the natural question of how to uniquely select one out of the many, apparently equally-suitable, possibilities. Following Jaynes information-theoretic perspective, this can be framed as an inference problem. We propose the Maximum Geometric Quantum Entropy Principle to exploit the notions of Quantum Information Dimension and Geometric Quantum Entropy. These allow us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it. After formulating the principle mathematically, we give the analytical solution to the maximization problem in a number of cases and discuss the physical mechanism behind the emergence of such maximum entropy ensembles.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-