Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks.

Abstract

Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein-ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that constructs ligand-receptor graphs based on atom proximity and allows users to rapidly apply and evaluate MPNN architectures for a broad range of tasks. We demonstrate the utility of PGN by introducing benchmarks for affinity and docking score prediction tasks. Graph networks generalize better than fingerprint-based models and perform strongly for the docking score prediction task. Overall, MPNNs with proximity graph data structures augment the prediction of ligand-receptor complex properties when ligand-receptor data are available.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View