Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Microsatellite characterization and marker development for the fungus Penicillium digitatum, causal agent of green mold of citrus

Published Web Location

https://doi.org/10.1002/mbo3.788
Abstract

Penicillium digitatum is one of the most important postharvest pathogens of citrus on a global scale causing significant annual losses due to fruit rot. However, little is known about the diversity of P. digitatum populations. The genome of P. digitatum has been sequenced, providing an opportunity to determine the microsatellite distribution within P. digitatum to develop markers that could be valuable tools for studying the population biology of this pathogen. In the analyses, a total of 3,134 microsatellite loci were detected; 66.73%, 23.23%, 8.23%, 1.24%, 0.16%, and 0.77% were detected as mono-, di-, tri-, tetra-, penta-, and hexanucleotide repeats, respectively. As consistent with other ascomycete fungi, the genome size of P. digitatum does not seem to correlate with the density of microsatellite loci. However, significantly longer motifs of mono-, di-, and tetranucleotide repeats were identified in P. digitatum compared to 10 other published ascomycete species with repeats of over 800, 300, and 900 motifs found, respectively. One isolate from southern California and five additional isolates from other countries ("global isolates") were used to initially screen microsatellite markers developed in this study. Twelve additional isolates, referred to as the "local isolates," were also collected from citrus at the University of California Riverside agricultural experiment station and were subsequently used to screen the primers that sequenced well and were polymorphic based on the global isolates. Thirty-six primers were screened, and nine trinucleotide loci and one hexanucleotide locus were chosen as robust markers. These loci yielded two to seven alleles and will be useful to study population genetic structure of P. digitatum populations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View