Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Confidence limits for the averted infections ratio estimated via the counterfactual placebo incidence rate

Abstract

Objectives

The averted infections ratio (AIR) is a novel measure for quantifying the preservation-of-effect in active-control non-inferiority clinical trials with a time-to-event outcome. In the main formulation, the AIR requires an estimate of the counterfactual placebo incidence rate. We describe two approaches for calculating confidence limits for the AIR given a point estimate of this parameter, a closed-form solution based on a Taylor series expansion (delta method) and an iterative method based on the profile-likelihood.

Methods

For each approach, exact coverage probabilities for the lower and upper confidence limits were computed over a grid of values of (1) the true value of the AIR (2) the expected number of counterfactual events (3) the effectiveness of the active-control treatment.

Results

Focussing on the lower confidence limit, which determines whether non-inferiority can be declared, the coverage achieved by the delta method is either less than or greater than the nominal coverage, depending on the true value of the AIR. In contrast, the coverage achieved by the profile-likelihood method is consistently accurate.

Conclusions

The profile-likelihood method is preferred because of better coverage properties, but the simpler delta method is valid when the experimental treatment is no less effective than the control treatment. A complementary Bayesian approach, which can be applied when the counterfactual incidence rate can be represented as a prior distribution, is also outlined.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View