Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles.

Abstract

The development and characterization of a quartz crystal microbalance (QCM) sensor for the direct detection of aerosolized influenza A virions is reported. Self-assembled monolayers (SAMs) of mercaptoundecanoic acid (MUA) are formed on QCM gold electrodes to provide a surface amenable for the immobilization of anti-influenza A antibodies using NHS/EDC coupling chemistry. The surface-bound antibody provides a selective and specific sensing interface for the capture of influenza virions. A nebulizer is used to create aerosolized samples and is directly connected to a chamber housing the antibody-modified crystal ("immunochip"). Upon exposure to the aerosolized virus, the interaction between the antibody and virus leads to a dampening of the oscillation frequency of the quartz crystal. The magnitude of frequency change is directly related to virus concentration. Control experiments using aerosols from chicken egg allantoic fluid and an anti-murine antibody based immunosensor confirm that the observed signal originates from specific viral binding on the chip surface. Step-by-step surface modification of MUA assembly, antibody attachment, and antibody-virus interaction are characterized by atomic force microscopy (AFM) imaging analysis. Using the S/N = 3 principle, the limit of detection is estimated to be 4 virus particles/mL. The high sensitivity and real-time sensing scheme presented here can play an important role in the public health arena by offering a new analytical tool for identifying bio-contaminated areas and assisting in timely patient diagnosis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View