Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The Entrance Boundary of the Multiplicative Coalescent

Published Web Location

The multiplicative coalescent X(t) is a l2-valued Markov process representing coalescence of clusters of mass, where each pair of clusters merges at rate proportional to product of masses. From random graph asymptotics it is known (Aldous (1997)) that there exists a standard version of this process starting with infinitesimally small clusters at time -∞. In this paper, stochastic calculus techniques are used to describe all versions (X(t);-∞ < t < ∞) of the multiplicative coalescent. Roughly, an extreme version is specified by translation and scale parameters, and a vector c ∈ l3 of relative sizes of large clusters at time -∞. Such a version may be characterized in three ways: via its t → -∞ behavior, via a representation of the marginal distribution X(t) in terms of excursion-lengths of a Lévy-type process, or via a weak limit of processes derived from the standard multiplicative coalescent using a "coloring" construction. © 1998 Applied Probability Trust.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View