Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Supporting efficient record linkage for large data sets using mapping techniques

Abstract

This paper describes an efficient approach to record linkage. Given two lists of records, the record-linkage problem consists of determining all pairs that are similar to each other, where the overall similarity between two records is defined based on domain-specific similarities over individual attributes. The record-linkage problem arises naturally in the context of data cleansing that usually precedes data analysis and mining. Since the scalability issue of record linkage was addressed in [21], the repertoire of database techniques dealing with multidimensional data sets has significantly increased. Specifically, many effective and efficient approaches for distance-preserving transforms and similarity joins have been developed. Based on these advances, we explore a novel approach to record linkage. For each attribute of records, we first map values to a multidimensional Euclidean space that preserves domain-specific similarity. Many mapping algorithms can be applied, and we use the Fastmap approach [16] as an example. Given the merging rule that defines when two records are similar based on their attribute-level similarities, a set of attributes are chosen along which the merge will proceed. A multidimensional similarity join over the chosen attributes is used to find similar pairs of records. Our extensive experiments using real data sets show that our solution has very good efficiency and recall.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View