Skip to main content
Open Access Publications from the University of California

Thermal neutron capture cross sections for O16,17,18 and H2

Published Web Location
No data is associated with this publication.

Thermal neutron capture γ-ray spectra for O16,17,18 and H2 have been measured with guided cold neutron beams from the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) reactor and the Budapest Research Reactor (BRR) on natural and O17,18 enriched D2O targets. Complete neutron capture γ-ray decay schemes for the O16,17,18(n,γ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ-ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76-keV γ ray from O16(n,γ) was measured as Pγ(871)=96.6 ±0.5% and the thermal neutron cross section for this γ ray was determined as 0.164±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ-ray cross sections were previously standardized. The γ-ray cross sections for the O17,18(n,γ) and H2(n,γ) reactions were then determined relative to the 870.76-keV γ-ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ-ray cross sections and transition probabilities; σ0(O16)=0.170±0.003 mb; σ0(O17)=0.67±0.07 mb; σ0(O18)=0.141±0.006 mb; and σ0(H2)=0.489±0.006 mb.

Item not freely available? Link broken?
Report a problem accessing this item