Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Anomalous Anderson localization behaviors in disordered pseudospin systems

Abstract

We discovered unique Anderson localization behaviors of pseudospin systems in a 1D disordered potential. For a pseudospin-1 system, due to the absence of backscattering under normal incidence and the presence of a conical band structure, the wave localization behaviors are entirely different from those of conventional disordered systems. We show that there exists a critical strength of random potential ([Formula: see text]), which is equal to the incident energy ([Formula: see text]), below which the localization length [Formula: see text] decreases with the random strength [Formula: see text] for a fixed incident angle [Formula: see text] But the localization length drops abruptly to a minimum at [Formula: see text] and rises immediately afterward. The incident angle dependence of the localization length has different asymptotic behaviors in the two regions of random strength, with [Formula: see text] when [Formula: see text] and [Formula: see text] when [Formula: see text] The existence of a sharp transition at [Formula: see text] is due to the emergence of evanescent waves in the systems when [Formula: see text] Such localization behavior is unique to pseudospin-1 systems. For pseudospin-1/2 systems, there is also a minimum localization length as randomness increases, but the transition from decreasing to increasing localization length at the minimum is smooth rather than abrupt. In both decreasing and increasing regions, the [Formula: see text] dependence of the localization length has the same asymptotic behavior [Formula: see text].

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View