Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex.


We report the cDNA sequence and localization of a protein first identified by actin filament chromatography of Drosophila embryo extracts as ABP8 (Miller, K. G., C. M. Field, and B. M. Alberts. 1989. J. Cell Biol. 109:2963-2975). The cDNA encodes a 1201-amino acid protein which we name anillin. Anillin migrates at 190 kD on SDS-PAGE. Anillin is expressed throughout Drosophila development and in tissue culture cells. By immunofluorescence, anillin localizes to the nucleus of interphase cells, except in the syncytial embryo where it is always cytoplasmic. During metaphase, it is present in the cytoplasm and cortex, and during anaphase-telophase it becomes highly enriched in the cleavage furrow along with myosin II. In the syncytial embryo, anillin, along with myosin-II, is enriched in cortical areas undergoing cell cycle regulated invagination including metaphase furrows and the cellularization front. In contractile rings, metaphase furrows, and nascent ring canals, anillin remains bound to the invaginated cortex suggesting a stabilizing role. Anillin is not expressed in cells that have left the cell cycle. Anillin isolated from embryo extracts binds directly to actin filaments. The domain responsible for this binding has been mapped to a region of 244 amino acids by expression of protein fragments in bacteria. This domain, which is monomeric in solution, also bundles actin filaments. We speculate that anillin plays a role in organizing and/or stabilizing the cleavage furrow and other cell cycle regulated, contractile domains of the actin cytoskeleton.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View