- Main
AUTOMATED GENERATION OF LINKAGE LOOP EQUATIONS FOR PLANAR 1-DOF LINKAGES, DEMONSTRATED UP TO 8-BAR
Published Web Location
https://doi.org/10.1115/1.4029306Abstract
In this paper, we present an algorithm that automatically creates the linkage loop equations for planar one degree of freedom, 1DOF, linkages of any topology with revolute joints, demonstrated up to 8 bar. The algorithm derives the linkage loop equations from the linkage adjacency graph by establishing a rooted cycle basis through a single common edge. Divergent and convergent loops are identified and used to establish the fixed angles of the ternary and higher links. Results demonstrate the automated generation of the linkage loop equations for the nine unique 6-bar linkages with ground-connected inputs that can be constructed from the five distinct 6-bar mechanisms, Watt I-II and Stephenson I-III. Results also automatically produced the loop equations for all 153 unique linkages with a ground-connected input that can be constructed from the 71 distinct 8-bar mechanisms. The resulting loop equations enable the automatic derivation of the Dixon determinant for linkage kinematic analysis of the position of every possible assembly configuration. The loop equations also enable the automatic derivation of the Jacobian for singularity evaluation and tracking of a particular assembly configuration over the desired range of input angles. The methodology provides the foundation for the automated configuration analysis of every topology and every assembly configuration of 1DOF linkages with revolute joints up to 8 bar. The methodology also provides a foundation for automated configuration analysis of 10-bar and higher linkages.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-