Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Electronic Theses and Dissertations bannerUCSF

Design Principles of Self-Organizing Cell Polarity

Abstract

Cell polarization, the spatial self-organization of key molecules asymmetrically at distinct poles, is critical for cell growth, differentiation, and migration in diverse cell types. Previous studies have largely focused on a few network architectures that can achieve polarity and explored how they explain observed behavior. Here, we computationally explored the full space of one- and two-node signaling network architectures in an unbiased manner using coarse-grained representations, in order to elucidate the core design principles of cell polarity. We found three minimal motifs - positive feedback, mutual inhibition, and presence of a self-enhancing inhibitor - that can self-organize polarity and compared their robustness to variations in component concentrations, diffusion constants, and regulation strengths. Combining these motifs into more complex networks allowed for polarity over a wider range of parameters. Robust polarity is in fact best achieved by combining positive feedback with mutual inhibition, as has been observed in many well-studied biological polarity pathways. Such topologies, likely the result of an evolutionary process, can also serve as blueprints for synthetic biologists.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View