Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Probing autoionizing states of molecular oxygen with XUV transient absorption: Electronic-symmetry-dependent line shapes and laser-induced modifications

Abstract

We used extreme ultraviolet (XUV) transient absorption spectroscopy to study the autoionizing Rydberg states of oxygen in an electronically- and vibrationally-resolved fashion. XUV pulse initiates molecular polarization and near-infrared pulse perturbs its evolution. Transient absorption spectra show positive optical-density (OD) change in the case of nsσg and ndπg autoionizing states of oxygen and negative OD change for ndσg states. Multiconfiguration time-dependent Hartree-Fock (MCTDHF) calculations are used to simulate the transient absorption and the resulting spectra and temporal evolution agree with experimental observations. We model the effect of near-infrared perturbation on molecular polarization and find that the laser-induced phase-shift model agrees with the experimental and MCTDHF results, while the laser-induced attenuation model does not. We relate the electronic-state-symmetry-dependent sign of the OD change to the Fano parameters of the static absorption line shapes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View