Smoothed analysis of symmetric random matrices with continuous distributions
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Smoothed analysis of symmetric random matrices with continuous distributions

Abstract

We study invertibility of matrices of the form $D+R$ where $D$ is an arbitrary symmetric deterministic matrix, and $R$ is a symmetric random matrix whose independent entries have continuous distributions with bounded densities. We show that $|(D+R)^{-1}| = O(n^2)$ with high probability. The bound is completely independent of $D$. No moment assumptions are placed on $R$; in particular the entries of $R$ can be arbitrarily heavy-tailed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View