Skip to main content
eScholarship
Open Access Publications from the University of California

The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)(2)-vitamin D-3 in vivo and in vitro

  • Author(s): Huhtakangas, J A
  • Olivera, C J
  • Bishop, J E
  • Zanello, L P
  • Norman, Anthony W
  • et al.
Abstract

The steroid hormone 1alpha,25(OH)(2)-vitamin D-3 (1,25D) regulates gene transcription through a nuclear receptor [vitamin D receptor (VDR)] and initiation of rapid cellular responses through a putative plasma membrane-associated receptor (VDRmem). This study characterized the VDRmem present in a caveolae-enriched membrane fraction (CMF), a site of accumulation of signal transduction agents. Saturable and specific [H-3]-1,25D binding in vitro was found in CMF of chick, rat, and mouse intestine; mouse lung and kidney; and human NB4 leukemia and rat ROS 17/2.8 osteoblast-like cells; in all cases the 1,25D K D binding dissociation constant = 1-3 nM. Our data collectively support the classical VDR being the VDRmem in caveolae: 1) VDR antibody immunoreactivity was detected in CMF of all tissues tested; 2) competitive binding of [H-3]-1,25D by eight analogs of 1,25D was significantly correlated between nuclei and CMF (r(2) = 0.95) but not between vitamin D binding protein (has a different ligand binding specificity) and CMF; 3) confocal immunofluorescence microscopy of ROS 17/2.8 cells showed VDR in close association with the caveolae marker protein, caveolin-1, in the plasma membrane region; 4) in vivo 1,25D pretreatment reduced in vitro [H-3]-1,25D binding by 30% in chick and rat intestinal CMF demonstrating in vivo occupancy of the CMF receptor by 1,25D; and 5) comparison of [H-3]-1,25D binding in VDR KO and WT mouse kidney tissue showed 85% reduction in VDR KO CMF and 95% reduction in VDR KO nuclear fraction. This study supports the presence of VDR as the 1,25D-binding protein associated with plasma membrane caveolae.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View