Skip to main content
Open Access Publications from the University of California

Combinatorial Theory

Combinatorial Theory banner

Packings and Steiner systems in polar spaces

Published Web Location Commons 'BY' version 4.0 license

A finite classical polar space of rank \(n\) consists of the totally isotropic subspaces of a finite vector space equipped with a nondegenerate form such that \(n\) is the maximal dimension of such a subspace. A \(t\)-Steiner system in a finite classical polar space of rank \(n\) is a collection \(Y\) of totally isotropic \(n\)-spaces such that each totally isotropic \(t\)-space is contained in exactly one member of \(Y\). Nontrivial examples are known only for \(t=1\) and \(t=n-1\). We give an almost complete classification of such \(t\)-Steiner systems, showing that such objects can only exist in some corner cases. This classification result arises from a more general result on packings in polar spaces.

Mathematics Subject Classifications: 51E23, 05E30, 33C80

Keywords: Association schemes, codes, polar spaces, Steiner systems

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View