- Main
Differentiable Visual Computing: Challenges and Opportunities
Abstract
Classical algorithms typically contain domain-specific insights. This makes them often more robust, interpretable, and efficient. On the other hand, deep-learning models must learn domain-specific insight from scratch from a large amount of data using gradient-based optimization techniques. To have the best of both worlds, we should make classical visual computing algorithms differentiable to enable gradient-based optimization. Computing derivatives of classical visual computing algorithms is challenging: there can be discontinuities, and the computation pattern is often irregular compared to high-arithmetic intensity neural networks. In this article, we discuss the benefits and challenges of combining classical visual computing algorithms and modern data-driven methods, with particular emphasis to my thesis, which took one of the first steps toward addressing these challenges.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-