Skip to main content
eScholarship
Open Access Publications from the University of California

Triangulations from repeated bisection

Abstract

We present a method for the iterative refinement of triangulations. Given a coarse triangulation of the compact domain of a bivariate function, we present a refinement strategy bsed on approximation error. The triangulation is used to compute a best linear spline approximation, using the term best approxiamation in an integral least squares sense. We improve an approximation by identifying the triangle with largest error and refine the triangulation by bisecting this triangle.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View