- Main
First-order possibility models and finitary completeness proofs
Abstract
This paper builds on Humberstone's idea of defining models of propositional modal logic where total possible worlds are replaced by partial possibilities. We follow a suggestion of Humberstone by introducing possibility models for quantified modal logic. We show that a simple quantified modal logic is sound and complete for our semantics. Although Holliday showed that for many propositional modal logics, it is possible to give a completeness proof using a canonical model construction where every possibility consists of finitely many formulas, we show that this is impossible to do in the first-order case. However, one can still construct a canonical model where every possibility consists of a computable set of formulas and thus still of finitely much information.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-