Skip to main content
Open Access Publications from the University of California


UC San Francisco Previously Published Works bannerUCSF

Chick cranial neural crest cells use progressive polarity refinement, not contact inhibition of locomotion, to guide their migration.


To move directionally, cells can bias the generation of protrusions or select among randomly generated protrusions. Here we use 3D two-photon imaging of chick branchial arch 2 directed neural crest cells to probe how these mechanisms contribute to directed movement, whether a subset or the majority of cells polarize during movement, and how the different classes of protrusions relate to one another. We find that, in contrast to Xenopus, cells throughout the stream are morphologically polarized along the direction of overall stream movement and do not exhibit contact inhibition of locomotion. Instead chick neural crest cells display a progressive sharpening of the morphological polarity program. Neural crest cells have weak spatial biases in filopodia generation and lifetime. Local bursts of filopodial generation precede the generation of larger protrusions. These larger protrusions are more spatially biased than the filopodia, and the subset of protrusions that are productive for motility are the most polarized of all. Orientation rather than position is the best correlate of the protrusions that are selected for cell guidance. This progressive polarity refinement strategy may enable neural crest cells to efficiently explore their environment and migrate accurately in the face of noisy guidance cues.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View