Skip to main content
Open Access Publications from the University of California

Bayesian assimilation of multiscale precipitation data and sparse ground gauge observations in mountainous areas

  • Author(s): Wang, Y;
  • Chen, J;
  • Yang, D
  • et al.

Published Web Location
No data is associated with this publication.

Estimating the spatial distribution of precipitation is important for understanding ecohydrological processes at catchment scales. However, this estimation is difficult in mountainous areas because ground-based observation stations are often sparsely located and do not represent the spatial variability of precipitation. In this study, we develop a Bayesian assimilation method based on data collected on the Tibetan Plateau from 1980 to 2014 to estimate monthly and daily precipitation. To accomplish this, point-scale ground meteorological observations are combined with large-scale precipitation data such as satellite observations or reanalysis data. First, we remove the terrain effects from ground observations by fitting the precipitation data as functions of elevation, and then we spatially interpolate the residuals to 5-km-resolution grids to obtain monthly and daily precipitation. Additionally, we use Tropical Rainfall Measuring Mission (TRMM) satellite observations and ERA-Interim reanalysis data. Cross-validation methods are used to evaluate our method; the results show that our method not only captures the change in precipitation with terrain but also significantly reduces the associated uncertainty. The improvements are more evident in the main river source areas on the edge of the Tibetan Plateau, where elevation changes dramatically, and in high-altitude areas, where the ground gauges are sparse compared with those in low-altitude areas. Our assimilation method is applicable to other regions and is particularly useful for mountainous watersheds where ground meteorological stations are sparse and precipitation is considerably influenced by terrain.

Item not freely available? Link broken?
Report a problem accessing this item