Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Chemoproteomic Approach for the Quantitative Identification of Arsenic-Binding Proteins.

Abstract

Arsenic is a widespread environmental contaminant, and long-term exposure to arsenic in drinking water is known to be associated with the development of many human diseases. Identification of arsenic-binding proteins is important for understanding the mechanisms underlying the toxic effects of arsenic species. Here, we developed a chemoproteomic strategy, relying on the use of a biotin-As(III) probe, stable isotope labeling by amino acids in cell culture, and liquid chromatography-tandem mass spectrometry analysis, to identify quantitatively As(III)-binding proteins. Over 400 proteins were enriched from the lysate of HEK293T cells with streptavidin beads immobilized with the biotin-As(III) probe. Competitive labeling experiments in the presence or absence of p-aminophenylarsenoxide (PAPAO) revealed 51 candidate As(III)-binding proteins, including several molecular chaperones and cochaperones, that is, HSPA4, HSPA4L, HSPH1, HOP1, FKBP51, and FKBP52. We also validated, by employing western blot analysis, the ability of HSPA4, a member of heat shock protein 70 (HSP70) family, in binding with PAPAO and sodium arsenite in vitro. Together, our work led to the identification of a number of new As(III)-interaction proteins, and our results suggest that As(III) may perturb proteostasis partly through binding directly with molecular chaperones.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View