Skip to main content
eScholarship
Open Access Publications from the University of California

Links between annual variations of Peruvian stratocumulus clouds and of SSTs in the eastern equatorial Pacific.

  • Author(s): Yu, J.-Y.
  • Mechoso, C. R.
  • et al.
Creative Commons Attribution 4.0 International Public License
Abstract

The hypothesis that Peruvian stratocumulus play an important role on both the annual mean and annual variations of sea surface temperature (SST) in the eastern equatorial Pacific is examined. The problem is addressed by performing sensitivity experiments using the University of California, Los Angeles, coupled atmosphere–ocean GCM with different idealized temporal variations of stratocumulus in a region along the coast of Peru.

The results obtained are consistent with the notion that Peruvian stratocumulus are a key component of the interhemispherically asymmetric features that characterize the annual mean climate of the eastern equatorial Pacific, including the cold SSTs off Peru and the absence of a southern ITCZ. The principal new finding of this study is that the annual variations (i.e., deviations from the annual mean) of Peruvian stratocumulus are linked to the differences between the amplitude, duration, and westward propagation of the warm and cold phases of the equatorial cold tongue. In the model’s context, only if the prescribed annual variations of Peruvian stratocumulus have the same phase as the observed variations are those differences successfully captured.

air-sea interaction, climate forcing, sea surface temperature, stratocumulus

The impact of Peruvian stratocumulus on equatorial SST involves “dynamical” and “thermal” effects. The former develop through an enhancement of the northerly component of the surface wind from the Peruvian coast to the equator. The thermal effects develop through the special relationships between SST and surface evaporation over the equatorial cold tongue, which contributes to extend the cold phase until the end of the year. A successful portrayal of this behavior requires a realistic simulation of the annual variations of surface wind over the equatorial cold tongue.

Main Content
Current View