Skip to main content
eScholarship
Open Access Publications from the University of California

A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance

  • Author(s): Song, MK
  • Zhang, Y
  • Cairns, EJ
  • et al.

Published Web Location

https://doi.org/10.1021/nl402793z
Abstract

Lithium/sulfur (Li/S) cells are receiving significant attention as an alternative power source for zero-emission vehicles and advanced electronic devices due to the very high theoretical specific capacity (1675 mA·h/g) of the sulfur cathode. However, the poor cycle life and rate capability have remained a grand challenge, preventing the practical application of this attractive technology. Here, we report that a Li/S cell employing a cetyltrimethyl ammonium bromide (CTAB)-modified sulfur-graphene oxide (S-GO) nanocomposite cathode can be discharged at rates as high as 6C (1C = 1.675 A/g of sulfur) and charged at rates as high as 3C while still maintaining high specific capacity (∼800 mA·h/g of sulfur at 6C), with a long cycle life exceeding 1500 cycles and an extremely low decay rate (0.039% per cycle), perhaps the best performance demonstrated so far for a Li/S cell. The initial estimated cell-level specific energy of our cell was ∼500 W·h/kg, which is much higher than that of current Li-ion cells (∼200 W·h/kg). Even after 1500 cycles, we demonstrate a very high specific capacity (∼740 mA·h/g of sulfur), which corresponds to ∼414 mA·h/g of electrode: still higher than state-of-the-art Li-ion cells. Moreover, these Li/S cells with lithium metal electrodes can be cycled with an excellent Coulombic efficiency of 96.3% after 1500 cycles, which was enabled by our new formulation of the ionic liquid-based electrolyte. The performance we demonstrate herein suggests that Li/S cells may already be suitable for high-power applications such as power tools. Li/S cells may now provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles. © 2013 American Chemical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View