Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Bayesian Model Selection Approach to Multiple Change-Points Detection with Non-Local Prior Distributions

Published Web Location

https://doi.org/10.1145/3340804
Abstract

We propose a Bayesian model selection (BMS) boundary detection procedure using non-local prior distributions for a sequence of data with multiple systematic mean changes. By using the non-local priors in the BMS framework, the BMS method can effectively suppress the non-boundary spike points with large instantaneous changes. Further, we speedup the algorithm by reducing the multiple change points to a series of single change point detection problems. We establish the consistency of the estimated number and locations of the change points under various prior distributions. From both theoretical and numerical perspectives, we show that the non-local inverse moment prior leads to the fastest convergence rate in identifying the true change points on the boundaries. Extensive simulation studies are conducted to compare the BMS with existing methods, and our method is illustrated with application to the magnetic resonance imaging guided radiation therapy data.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View