Optimizing observables with machine learning for better unfolding
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Optimizing observables with machine learning for better unfolding

Abstract

Abstract: Most measurements in particle and nuclear physics use matrix-based unfolding algorithms to correct for detector effects. In nearly all cases, the observable is defined analogously at the particle and detector level. We point out that while the particle-level observable needs to be physically motivated to link with theory, the detector-level need not be and can be optimized. We show that using deep learning to define detector-level observables has the capability to improve the measurement when combined with standard unfolding methods.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View